tp = true positive ระบบบอกว่าใช่ (positive) และในความเป็นจริงก็คือใช่ (true)
fp = false positive ระบบบอกว่าใช่แต่ในความเป็นจริงคือไม่ใช่
fn = false negative ระบบบอกว่าไม่ใช่แต่ในความเป็นจริงคือใช่
precision = tp / (tp + fp) ค่ายิ่งเยอะยิ่งดี คือระบบเข้าใจผิดน้อย (exactness)
recall = tp / (tp + fn) ค่ายิ่งเยอะยิ่งดี คือระบบตกหล่นน้อย (completeness)
F-measure (%) = 100 x 2 x precision x recall /(precision + recall)
Accuracy VS F-measure : http://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/