วันศุกร์ที่ 29 พฤศจิกายน พ.ศ. 2567

Recent Text classification algorithms

 Deep Learning-Based Approaches

  • Transformer-Based Models:
    • BERT (Bidirectional Encoder Representations from Transformers)
    • RoBERTa (Robustly Optimized BERT Pretraining Approach) 
    • XLNet
    • GPT-3
    • DistilBERT
  • Recurrent Neural Networks (RNNs):
    • Long Short-Term Memory (LSTM), BiLSTM
    • Gated Recurrent Unit (GRU)
  • Convolutional Neural Networks (CNNs):
    • CNN
    • TextCNN
  • Traditional Machine Learning

    1. Naïve Bayes (NB): Probabilistic; effective for high-dimensional text.
    2. Support Vector Machines (SVM): Strong for sparse data; uses margins to separate classes.
    3. Logistic Regression: Simple and interpretable for binary/multi-class tasks.
    4. k-Nearest Neighbors (k-NN): Uses proximity; expensive for large datasets.
    5. Random Forests: Ensemble-based; reduces overfitting.