Statistical model vs machine learning model
- sm can be interpreted by human e.g. doctors interpret arima models.
- ml model is too complicated to be interpreted by human. That's why we let machine create it and call ml model.
- Statistics draws population inferences from a sample, and machine learning finds generalizable predictive patterns. (https://www.nature.com/articles/nmeth.4642)
- Statistics is The mathematics of the collection, organization, and interpretation of numerical data, especially the analysis of population characteristics by inference from sampling. Cf. American Heritage
- Decision tree algorithms have been studied throughout machine learning and statistics as a nonparametric approach to data modeling (Breiman, et al., 1984; Quinlan, 1993). Decision tree methodology is often contrasted with classical parametric statistical methodology, which requires the formulation of an explicit probabilistic model of the data generation process. (Cf. M.J. 1994, A Statistical Approach to Decision Tree Modeling) เราสรุปว่า DT เป็น supervised ML model ที่ตีความได้เหมือน statistical model และตอนตีความแต่ละเส้นทางในต้นไม้อาจเห็นโอกาสเกิดปัญหาในอนาคต เช่น เข้าไกล้ leave node ที่เป็นโรคแล้วไหมจะได้ป้องกันเนิ่นๆ