วันอาทิตย์ที่ 31 สิงหาคม พ.ศ. 2568

Model overfit

 Overfitting is a common problem in machine learning where a model learns the training data too well, including its noise and random fluctuations, to the point that it fails to make accurate predictions on new, unseen data. It's like a student who memorizes test answers without understanding the underlying concepts; they do well on the practice test (training data) but struggle on the real exam (new data). 🧠

An overfit model has high variance and low bias, meaning it is highly sensitive to the training data and performs poorly when given new information. This contrasts with an underfit model, which is too simple to capture the underlying patterns and performs poorly on both training and new data.

How to Detect and Prevent Overfitting

Detecting overfitting often involves monitoring the model's performance on both a training dataset and a separate validation dataset. A key indicator is when the model's performance on the training data continues to improve (e.g., a decrease in error) while its performance on the validation data begins to worsen.

Here are some common strategies to prevent overfitting:

Use More Data: One of the most effective ways to prevent overfitting is to increase the amount of training data. A larger, more diverse dataset helps the model learn the true patterns rather than memorizing random noise.

Simplify the Model: If a model is too complex for the given data, it's more likely to overfit. You can reduce complexity by using a simpler algorithm or by reducing the number of parameters or features.

Regularization: This technique adds a penalty to the model's loss function based on its complexity. This discourages the model from assigning too much importance to specific features and helps prevent it from becoming overly complex. E.g. L1 Regularization (Lasso)

Early Stopping: During the training process, you can monitor the model's performance on the validation set. If the validation error starts to increase, you can stop the training process early to prevent overfitting.

Cross-Validation: This method involves splitting the data into multiple subsets, or "folds." The model is trained and tested on different combinations of these folds, which helps ensure it's not performing well on just one specific data split.

Dropout Primarily used in neural networks, dropout is a different kind of regularization. During each training iteration, it randomly "drops" a percentage of neurons by temporarily ignoring them. This prevents neurons from becoming too co-dependent and forces the network to learn more robust and generalizable patterns. Early Stopping This technique involves monitoring the model's performance on a separate validation dataset during training. When the performance on the validation set stops improving or begins to get worse, you stop the training process early. This prevents the model from continuing to learn the noise in the training data, which would lead to overfitting. 

--Gemini 

วันเสาร์ที่ 23 สิงหาคม พ.ศ. 2568

Stat vs Math

Math is about discovering and proving truths that are universally valid.

Stat is about drawing conclusions from data, often with uncertainty.

AspectMathematicsStatistics
FocusAbstract concepts, patterns, structuresData collection, analysis, interpretation
NatureDeductive reasoning (from theory to result)Inductive reasoning (from data to inference)
PurposeTo develop theories and solve equationsTo make decisions or predictions based on data
Core ActivitiesProving theorems, solving equationsEstimating, testing hypotheses, modeling data
Key TopicsAlgebra, calculus, geometry, number theoryProbability, sampling, regression, inference

วันอังคารที่ 19 สิงหาคม พ.ศ. 2568

วันเสาร์ที่ 16 สิงหาคม พ.ศ. 2568

วันพุธที่ 6 สิงหาคม พ.ศ. 2568

สรรพนามบุรุษที่สองสำหรับตำรวจและทหารบก

ยศทหารบก

  • นายสิบ/ชั้นประทวน:

    • สิบตรี, สิบโท, สิบเอก: นิยมเรียกกันทั่วไปว่า "หมู่"

    • จ่าสิบตรี, จ่าสิบโท, จ่าสิบเอก: นิยมเรียกกันว่า "จ่า"

    • จ่าสิบเอก (อัตราเงินเดือนสูงขึ้น): จะเรียกว่า "จ่าพิเศษ"

  • นายทหารสัญญาบัตร:

    • ร้อยตรี, ร้อยโท: เรียกกันว่า "ผู้หมวด"

    • ร้อยเอก: เรียกกันว่า "ผู้กอง"

    • พันตรี, พันโท, พันเอก: เรียกกันว่า "ผู้พัน"

    • พันเอกพิเศษ, พลตรี, พลโท, พลเอก: เรียกกันว่า "นายพล"

    • ตำแหน่งผู้บังคับการกรมขึ้นไป: จะนิยมเรียกกันว่า "ผู้การ"

ยศตำรวจ

  • ชั้นประทวน:

    • สิบตำรวจตรี, สิบตำรวจโท, สิบตำรวจเอก: เรียกกันว่า "หมู่"

    • จ่าสิบตำรวจ: เรียกกันว่า "จ่า"

    • ดาบตำรวจ: เรียกกันว่า "ดาบ"

  • ชั้นสัญญาบัตร:

    • ร้อยตำรวจตรี, ร้อยตำรวจโท: เรียกกันว่า "ผู้หมวด"

    • ร้อยตำรวจเอก: เรียกกันว่า "ผู้กอง"

    • พันตำรวจตรี, พันตำรวจโท, พันตำรวจเอก: เรียกกันว่า "ผู้พัน"

    • พลตำรวจตรี, พลตำรวจโท, พลตำรวจเอก: ตำแหน่งนี้จะเรียกกันว่า "นายพล"

    • ตำแหน่งผู้บังคับการกองบังคับการขึ้นไป (ตั้งแต่ พล.ต.ต. ขึ้นไป): นิยมเรียกกันว่า "ผู้การ"

    • สารวัตร: เป็นชื่อตำแหน่ง ไม่ใช่ชื่อยศ โดยสารวัตรส่วนใหญ่จะเป็นยศ พันตำรวจตรี

วันอังคารที่ 5 สิงหาคม พ.ศ. 2568

Web service runs on application server

 A RESTful web service is a type of web application, and its core business logic, where the "work" of the service is performed, runs on an application server.

Here's why and how it fits into the web server and application server model:

 * RESTful Services and Dynamic Content: A RESTful web service is designed to provide dynamic data, often in formats like JSON or XML, in response to requests. This is the very definition of dynamic content, which is the application server's main purpose. A static HTML file doesn't need to be generated—it's just a file. But a request for a RESTful endpoint like /users/123 needs to trigger code that queries a database, formats the user's data, and returns it as a JSON object. This logic runs on the application server.

 * The Web Server's Supporting Role: While the RESTful service code runs on the application server, a web server is still typically used in front of it. In this scenario, the web server's job is not to serve the RESTful data directly. Instead, it acts as a smart proxy:

   * It handles the incoming HTTP requests from clients.

   * It forwards requests for the RESTful endpoints to the application server.

   * It can also perform tasks like load balancing (distributing requests across multiple application servers) and SSL termination (handling the encrypted connection so the application server doesn't have to).

 * Example:

   * A client sends a GET request to https://api.example.com/users/123.

   * This request first hits a web server (e.g., NGINX).

   * The web server is configured to recognize that requests to the /users path should be routed to a specific application server.

   * The application server (e.g., a Node.js server or a Java servlet container like Tomcat) receives the request.

   * It executes the code for the users endpoint, which likely performs a database query to find the user with ID 123.

   * The application server then formats the data into a JSON response.

   * It sends the JSON response back to the web server.

   * The web server sends the final JSON response back to the client.

In summary, the RESTful web service itself—the code that defines the API, handles requests, and provides responses—is executed on the application server. The web server serves as a crucial component of the overall infrastructure, providing an efficient and secure gateway to the application server'

s functionality.

วันพฤหัสบดีที่ 31 กรกฎาคม พ.ศ. 2568

วันพุธที่ 16 กรกฎาคม พ.ศ. 2568

Bottle levels for Broadband filters

 Broadband filters, often referred to as "light pollution reduction" (LPR) or "CLS" (City Light Suppression) filters, are designed to block specific wavelengths of light commonly associated with artificial light sources (like sodium vapor and mercury vapor lamps) while allowing most of the visible spectrum, including the light from broadband celestial objects, to pass through.

Here's a breakdown of their suitability across the Bortle Scale:

Bortle Scale 1-4 (Dark to Rural/Suburban Transition):

 * Generally NOT recommended or necessary. If you're lucky enough to be in truly dark or moderately dark skies, a broadband filter will often do more harm than good.

   * Loss of Signal: Broadband filters block some light from the desired celestial object, as they are cutting out parts of the spectrum. In dark skies, the benefit of light pollution reduction is minimal, and the loss of natural light from your target can actually reduce the overall signal-to-noise ratio.

   * Color Shift: They can introduce a slight color cast, making color calibration more challenging.

   * Dimming: They will dim the overall view, which is counterproductive in dark skies where you want to gather as much light as possible.

 * Exception: Some astrophotographers might use a mild broadband filter (like an Optolong L-Pro) in Bortle 4 or even 3 if they are trying to specifically combat residual light pollution from a distant city glow on the horizon, or to slightly enhance contrast on some objects. However, for most broadband targets, no filter is often the best choice in these conditions.

Bortle Scale 5-7 (Suburban to Urban Transition):

 * Where they are most effective and commonly used. This is the "sweet spot" for broadband filters.

   * Light Pollution Reduction: In these areas, there's a significant amount of light pollution from various sources. Broadband filters help to filter out the common culprits (sodium, mercury vapor) making a noticeable difference in reducing sky glow and improving contrast for broadband targets.

   * Suitable for Galaxies and Star Clusters: These filters allow enough of the broad spectrum light from galaxies, star clusters, and reflection nebulae to pass through, making them viable targets even from these moderately light-polluted locations.

   * More Natural Colors: Compared to narrowband or dual-band filters, broadband filters generally allow for more natural-looking star colors.

 * Examples: Many popular broadband filters like the Optolong L-Pro, Astronomik CLS, or similar are designed for these conditions.

Bortle Scale 8-9 (City Sky to Inner-City Sky):

 * Limited effectiveness, often less beneficial than dual-band/narrowband filters.

   * Newer LED Light Pollution: Modern LED streetlights emit a much broader spectrum of light, which broadband filters struggle to block effectively without also blocking significant amounts of desired light from your celestial target. This makes them less effective against contemporary light pollution.

   * Overwhelmed Signal: In extremely light-polluted areas, the sky glow can be so intense that even a broadband filter can't sufficiently reduce it to make fainter broadband targets (like galaxies) stand out. The signal from these objects is simply too overwhelmed by the background.

   * Better for Specific Targets: For Bortle 8-9, if you want to image, your best bet for most objects is to focus on emission nebulae using dual-band or narrowband filters. These filters are far more aggressive at isolating specific wavelengths, allowing you to cut through extreme light pollution to capture objects that emit light predominantly in those narrow bands (like H-alpha and O-III).

   * Processing is Key: Even with a broadband filter in these conditions, significant post-processing (gradient removal, noise reduction) will be essential to salvage an image. Some astrophotographers even argue that for galaxies in Bortle 8-9, it's sometimes better to shoot without a filter and rely solely on aggressive processing tools like PixInsight's DynamicBackgroundExtraction or Siril's background extraction, as a filter might remove too much valuable signal.

In summary:

 * Bortle 1-4: Generally no filter is best for broadband targets.

 * Bortle 5-7: Broadband filters are highly recommended and effective for imaging broadband targets (galaxies, star clusters, reflection nebulae) and for general light pollution reduction.

 * Bortle 8-9: Broadband filters have limited effectiveness, especially against modern LED light pollution. Dual-band or narrowband filters are usually preferred for imaging emission nebulae from these locations, while broadband targets remain extremely challenging.

If you are in Bangkok (likely Bortle 8 or 9 in most areas), a broadband filter might offer a slight improvement for some targets, but you will likely find dual-band or narrowband filters for nebulae to be much more impactful for imaging. For galaxies, battling the light pollution will be a significant challenge regardless of the filter, and often relies heavily on integration time and advanced post-processing.

ลำดับการใช้ทรัพย์

 ใช้ทรัพย์เลี้ยงดูตนเองมารดาบิดาบุตรภรรยาข้าทาสบริวารและสงฆ์ตามลำดับ

วันเสาร์ที่ 12 กรกฎาคม พ.ศ. 2568

Open LLM models

Llama

https://www.llama.com/

Mistral 

https://mistral.ai/models

Etc:

LLaMA 2 7B / 13B / 70Bparams Meta Custom (non-commercial for some) Powerful, widely used. Available via Hugging Face.

LLaMA 3 8B / 70B Meta Custom (open-weight) Newer, more capable than LLaMA 2. May have commercial restrictions.

Mistral 7B 7B Mistral AI Apache 2.0 Fast, strong performance. Supports multi-query attention.

Mixtral 8x7B ~12.9B active Mistral AI Apache 2.0 Sparse MoE (uses 2 of 8 experts). High performance.

Phi-2 / Phi-3 2.7B / 3.8B+ Microsoft MIT / Open Small but very efficient. Good for on-device.

Gemma 2 2B / 7B Google DeepMind Apache 2.0 Lightweight, efficient, for research & commercial use.

Command R / R+ 7B+ Cohere Apache 2.0 Fine-tuned for RAG (retrieval-augmented generation).

OpenHermes 2.5 / 2.5-Mistral 7B Teknium Open (depends on base) Popular open-instruct models built on Mistral.

Yi-34B 34B 01.AI Open (restrictions may apply) High-performance model from China.

Dolphin 2.7 7B Cognitive Computations Open Strong performance; instruction-tuned.

StableLM Zephyr 3B / 7B Stability AI Open Aligned with RLHF, chat-tuned.

Pythia 70M–12B EleutherAI Apache 2.0 Designed for transparency & research.

RedPajama 3B / 7B Together / Hazy Research Apache 2.0 Full-stack dataset + model project.

Falcon 7B / 40B TII (UAE) Apache 2.0 (7B), custom (40B) Early open model; still useful.

Where to Use or Download Them

Hugging Face – Most are hosted here with easy-to-use APIs.

Ollama – Run models locally with one command (supports LLaMA 2/3, Mistral, etc.).

LMStudio – GUI for running open LLMs locally on Mac/Windows.

Replicate – Run open models via web APIs.

GPT4All – Desktop apps and models optimized for offline use.

---

🧠 Tips When Choosing a Model

Use Mistral 7B or Mixtral 8x7B for high-quality, efficient chat or RAG apps.


Use Phi-3 or Gemma 2B for on-device or low-resource environments.


Use LLaMA 3 (8B or 70B) if you want Meta’s best open-weight models for research.

List of GenAI

grok.com

chatgpt.com

https://gemini.google.com/app

https://claude.ai

https://chat.deepseek.com

https://www.meta.ai/

https://www.perplexity.ai/

storm.genie.stanford.edu

https://cursor.com/

https://www.airtable.com/

วันพฤหัสบดีที่ 10 กรกฎาคม พ.ศ. 2568

Free pretrained models, data sets, libs

 https://huggingface.co/

วันพุธที่ 9 กรกฎาคม พ.ศ. 2568

Is a reasoning model an LLM?

 Yes, a "reasoning model" often refers to a type of Large Language Model (LLM) that has been specifically developed or fine-tuned to excel at complex, multi-step reasoning tasks.

Here's a breakdown:

 * Large Language Models (LLMs): These are powerful AI models trained on vast amounts of text data. They are excellent at understanding and generating human-like text, performing tasks like summarization, translation, and basic question answering.

 * Reasoning Models (or Reasoning LLMs): While general LLMs can perform some basic reasoning, "reasoning models" are a specialization. They are designed to break down complex problems (like puzzles, advanced math, or coding challenges) into smaller, manageable steps and then logically work through them. This often involves techniques like "Chain-of-Thought" (CoT) prompting, where the model generates intermediate reasoning steps.

Essentially, a reasoning model is an LLM that has been enhanced to exhibit more robust and explicit reasoning capabilities, often by being trained with specific methods (like reinforcement learning) or prompted to "think step by step."

So, while not all LLMs are specifically "reasoning models," the most advanced reasoning models today are indeed built upon the foundation of large language mo

dels.

การใช้เงิน

ซื้อของแป๊บเดียวก็เบื่อ

ซื้อประสบการณ์จำไปจนวันตาย

คนรวยคือมี passive income (เช่นดอกเบี้ย) มากกว่ารายจ่าย

วันเสาร์ที่ 5 กรกฎาคม พ.ศ. 2568

Calculus & Algebra

Calculus studies change and accumulation. It has two main parts:

1. Differential Calculus

How things change

  • Focus: Rates of change, slopes, derivatives.
  • Key idea: Finds how fast something is changing at any point.
  • Example: If you drive a car, differential calculus tells you your instantaneous speed at any moment (the derivative of your position with respect to time).Derivative = slope of the tangent line to a curve
  • Example: If f(x) = x^2, then f’(x) = 2x, which tells how fast f(x) changes at each x

 2. Integral Calculus

How things accumulate

  • Focus: Areas under curves, totals, integrals.
  • Key idea: Finds the total amount accumulated over time or space.
  • Example: If you know your speed at each moment, integral calculus tells you the total distance you’ve traveled.Integral =
  • Example: \int x^2 \, dx = \frac{1}{3}x^3 + C


 Fundamental Theorem of Calculus

This theorem connects the two parts:

  • Differentiation and integration are opposites.
  • If you integrate a function and then differentiate the result, you get the original function back.

Algebra uses symbols (like x, y) to represent numbers and relationships. It helps us solve problems where some values are unknown.



Self supervised learning

ใช้ pseudo labels ในการ train classification model. ไม่มีการใช้ labeled data เลย ส่วน pseudo labels ถูกสร้างขึ้นมาโดยการทำ clustering of unlabeled data นั่นคือใช้ cluster id เป็น pseudo labels เรียกขั้นตอนนี้ว่า pretexting